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1 Stick Knots and Colorings
Knot theory is an interesting and dynamically evolving field of topology. A knot is a

circle embedded in the three-dimensional space, and the main question of this theory is how
to distinguish knots and determine from their planar projections (knot diagrams) whether
they represent equivalent knots. For this purpose, we use invariants, and one of the most
basic such properties is p-colorability for an odd prime number p.

We say that a projection is p-colorable if we can label its strands using numbers 0, ..., p−1,
such that at least two of the labels are distinct and at each crossing the relation

2x− y − z ≡ 0 (mod p)

holds, where x is the label on the overcrossing and y and z the other two labels.
With algebraic methods, we can tell for which primes a given knot is p-colorable. However,

in most p-colorings, there is no need to use all p colors.

Conjecture 1. Let p be an odd prime, and K any p-colorable knot. The minimum number
of colors needed in a p-coloring of K is ⌊log2 p⌋+ 2.

There are several studies on this question, and the conjectured number is known to be
a lower bound. After getting familiar with the neccessary background and tools, we plan to
work on this problem.

A stick knot is a knot which consists of a finite union of line segments called sticks. A
natural question is the minimal number of sticks needed to construct a representative of a
given knot type, that is, the stick number s(K) of a knot K. For most knots, we only know
weak bounds on the stick number. Motivated by this, we aim to find the exact number or
better bounds at least for special knot types such as twist knots or two-bridge knots.

Conjecture 2. Denote the crossing number (the minimal number of double points in any
generic planar projection of the knot type) by c(K). For any two-bridge knot K with c(K) ≥ 6,

s(K) = c(K) + 2.

The participants will learn the basic notions and results of knot theory, along with some
useful combinatoric and algebraic tools, as well as knot invariants. They get an insight
to related, more specific fields of knot theory such as grid diagrams, contact structures or
Legendrian knots.
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2 Convergence of randomized distributed averaging
Some agents wish to average their measurements. If they could communicate synchronously

along a nice graph, this task would proceed quickly. Instead, they are only allowed to send
messages on few of the edges at a time. A functioning scheme for this scenario is the so-called
ratio consensus (also known as push-sum or weighted gossip), where each entity i stores a sec-
ondary variable wi alongside its value xi. Here xi

0 is initialized as the measurement, wi
0 = 1.

For a message from i to j, the update is as follows:

xi
t+1 = (1− q)xi

t, xj
t+1 = xj

t + qxi
t,

wi
t+1 = (1− q)wi

t, wj
t+1 = wj

t + qwi
t,

where q ∈ (0, 1) is a fixed global ratio. It has been proven that for nontrivial i.i.d. messaging,
the ratio xi

t/w
i
t tends to the average for each entity with probability 1, exponentially fast.

But at what rate?
To get a situation where we can grasp this rate, we consider the case where each agent

sends a message to a single random neighbor at each step. Let P be the matrix of transmission
probabilities, λi its spectrum, and n the number of entities. In the transitive case (and
perhaps more generally?), with some effort, we can obtain the largest root of the following
(polynomial) equation as an upper bound for the rate:

q2

n

∑
j>1

1− λ2
j

x− (1− q + qλj)2
= 1.

Whether this is elegant or obscure is up to taste, but certainly practical as it only requires
understanding a single root of an n− 1 degree polynomial. For other known approaches, one
needs to understand an n2 × n2 matrix or asymptotic quantities.

Here a challenge is to get a cleaner insight on this root or a robust approximation, which
is less implicit but still informative (i.e., something away from 1), possibly some description
of the dependence on q.

Background, references:

• Generally about the averaging process https://ieeexplore.ieee.org/iel5/8767/
27770/01238221.pdf,

• on rate estimates https://ieeexplore.ieee.org/iel7/9/9743955/09382110.pdf,
https://arxiv.org/pdf/2104.04802,

• and for the polynomial estimate mentioned above https://arxiv.org/pdf/2307.
06157.

3 Pattern-free permutons
Using a natural subpermutation concept one can define the density of a short permutation

or pattern in a long permutation, and thus two large permutations can be considered similar

2

https://ieeexplore.ieee.org/iel5/8767/27770/01238221.pdf
https://ieeexplore.ieee.org/iel5/8767/27770/01238221.pdf
https://ieeexplore.ieee.org/iel7/9/9743955/09382110.pdf
https://arxiv.org/pdf/2104.04802
https://arxiv.org/pdf/2307.06157
https://arxiv.org/pdf/2307.06157


if their pattern densities are close. Following these ideas, a permutation sequence is called
convergent if the sequence of pattern densities converges for any pattern. The picture is
complete due to the fact that there is a nice limit object: the limits of convergent permutation
sequences are certain probability measures defined on [0, 1]2, which are called permutons.
Sampling n points from such a measure also determines a pattern, through which the density
of patterns can be defined in permutons. An interesting question is what can be said about
permutations or permutons in which the density of one or more given patterns is fixed. To
mention some already solved problems: how many permutations are there that avoid the
pattern 123, or what could be the support of a 123-free permuton? The beauty of the theory
lies in the fact that a connection can be established between such discrete-continuous pairs
of questions. The aim of research is to better understand this relationship.

4 Size of certain symmetric differences
It is an open question in combinatorial geometry whether the area of the symmetric

difference of an odd number of unit discs is always at least π or not. We would look at
discrete analogues of similar flavour. For which classes of finite sets A ⊆ Zr is it true that the
size of an odd number of translates of A is always at least |A|? Also, for which classes can we
give good lower bounds if we can take any (finite) number of translates of A? An interesting
special case is known as Pilz’ conjecture which states that the size of the symmetric difference
of the sets A, 2A, . . . , nA is at least n if A ⊆ N is finite and kA = {ka : a ∈ A}. The best
known lower bound is of shape n/(log n)λ (where λ ≈ 0.2223).

5 Additive combinatorics
We would study the largest possible size of sets avoiding certain arithmetic configurations

in Fn
p , or more generally, in Zn

m. A few example of forbidden configurations: k-term arithmetic
progressions or corners: 3-element sets of the form (a, b), (a+ d, b), (a, b+ d) in Fn

p × Fn
p .

We briefly mention some very recent developments in the area. In Fn
3 a lower bound

of 2.2202n−o(n) was recently obtained for sets avoiding 3-term arithmetic progressions by
Romera– Paredes et al. [3] using artificial intelligence building upon traditional methods
from previous bounds. In a parallel (yet unpublished) work, Naslund obtained the lower
bound 2.2208n−o(n) with an approach related to Shannon capacity. Elsholtz et al [1] proved
that for any fixed integer m ≥ 2 and sufficiently large n (in terms of m), there exists a
three-term progression free subset A ⊆ Zn

m of size |A| ≥ (cm)n for some absolute constant
c > 1/2. Building on their ideas Hunter [2] gave the first quasipolynomial improvement
since the original construction of Behrend for the size of sets avoiding 3-term arithmetic
progressions in {1, 2, . . . , n}.

Our aim is to improve on the known bounds in certain settings.
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6 Counting maximal independent sets
Recall that a vertex set in a (hyper)graph is independent if it contains no edge. An

independent set is maximal if it is not a proper subset of a larger independent set. Let
MIS(G) denote the number of maximal independent sets (MIS) in a graph G. Miller and
Muller [5] and independently Moon and Moser [6] showed that for all n-vertex graphs G
we have MIS(G) ≤ 3n/3 which is sharp as given by the vertex-disjoint union of triangles.
When triangles are forbidden from G, Hujter and Tuza [3] showed MIS(G) ≤ 2n/2 which is
achievable by a matching. If we allow at most t vertex-disjoint triangles, then Palmer and
Patkós [8] showed that the best is (roughly) to take t vertex-disjoint triangles and a matching
on the remaining vertices.

There are several natural generalizations of these problems. The first is for 3-uniform
hypergraphs (i.e. all hyperedges are of cardinality 3).

Problem 3. Determine the maximum number of MIS in an n-vertex 3-uniform hypergraph.
What if we require the hypergraph to be K3

4 -free?

Disjoint copies of K3
5 (construction by Tomescu [9]) gives a lower bound of about 1.5849n

and Lonc and Truszczyński [4] gave an upper bound of about 1.6702n. Note that there are
alternative definitions of an independent set in a hypergraph that allow further variations of
the problem.

There are many generalizations in the graph setting. The first is to count induced r-
regular subgraphs. An independent set is an induced 0-regular subgraph. The maximum
number of maximimal induced 1-regular subgraphs (i.e. maximal induced matchings) in an
n-vertex graph is known to be 10n/5 (see Basavaraju et al. [1]). This is achieved by disjoint
copies of K5. If we forbid triangles, the maximum is 3n/3 which is achieved by disjoint copies
of K3,3.

Problem 4. What is the max number of induced matchings in a K4-free n-vertex graph?

Nielsen [7] showed that the maximum number of MIS of size k in an n-vertex graph is
asymptotic to (n/k)k. He, Nie and Spiro [2] examined the question when G is taken to be
Kt-free. Among others they constructed an n-vertex triangle-free graph with Ω(nk/2) MIS of
size k ≥ 4 and asked for a matching upper-bound:
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Problem 5. Show that max number of MIS of size k ≥ 4 in a triangle-free graph is O(nk/2).

One more related direction:

Problem 6. Find the max number of maximal triangle-free sets in an n-vertex K4-free graph.

A good starting point for these problems is the beautiful inductive argument in [10].
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7 Euclidean Order-Ramsey Theory
Consider an ordered point set in your favorite metric space, e.g., P = (p1, . . . , pk) ⊂ Rd.

Is it true that for any ordering ≺ of the points of the metric space there is a copy of P
where p1 ≺ . . . ≺ pk? For example, it is true for d = 2 and k = 3 that for any ordering ≺
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of the points of the plane we can find three points A,B,C that form the three vertices of a
unit side-length equilateral triangle in this counterclockwise order, such that A ≺ B ≺ C.
In general, we can be less restrictive, and only look for isometric copies of P , i.e., ignore the
orientation and also allow reflections. Would that make the statement true for any triangle?

While this question has not been hitherto studied, there is a very rich theory of Euclidean
Ramsey Theory (ERT), where instead of orderings we consider colorings. A good place to
get acquainted with this topic is Graham’s survey [6] and the three original papers by Erdős,
Graham, Montgomery, Rothschild, Spencer, and Straus [1, 2, 3]. The recordings of a more
recent workshop on the topic can be found at https://coge.elte.hu/WERT.html.

The goal of this project is to combine ERT with the new field of the theory of ordered
graphs [9]. In the main question of ERT is for which sets P it is true that for every r there is
a d such that every r-coloring of Rd contains a monochromatic copy of P . It was conjectured
in [1] that this is true exactly for spherical sets, though this has been later challenged [7].
Could something similar hold in case of orderings?

This might be more related to the Erdős-Rado Canonization Theorem [4] where the
number of colors is not restricted. Similar questions have been considered in a geometric
setting only very recently [8].
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8 Orientations minimizing the number of Eulerian tours
It is well-known that an oriented graph has an Eulerian tour (a walk that uses each

arc exactly once) if and only if the orientation is Eulerian, that is, each vertex has equal
in- and out-degrees. Suppose that we have an unoriented graph in which each degree is
even. We would like to study the following question: Which Eulerian orientation of the
graph has a minimal number of Eulerian tours? There is a conjecture for planar graphs. If a
graph is embedded into the plane, then one can orient it in an Eulerian way so that around
each vertex, in- and out-edges alternate. (Actually, there are two such orientations, that
are "mirror images" of each other.) The conjecture is that these alternating orientations
minimize the number of Eulerian tours. There is no conjecture about which orientations
could minimize the number of Eulerian tours for non-planar graphs. The goal would be to
look at many examples, and set up many conjectures (and ideally, prove some of them).
For example: How many minimizing orientations are there for a typical graph? How do the
minimizing orientations relate to each other? Can we say anything about the orientations
maximizing the number of Eulerian tours?
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